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The effect of  the resistance of  the metal phase on the current distribution in cylindrical electrochemical 
reactors taking into account the resistance of  the solution phase is analyzed. A mathematical  model 
is proposed, which assumes that the external electrode is isopotential and the electrochemical reaction 
on the external electrode has a low polarization resistance (d i /d r /~  or). Consequently the equation 
for the potential distribution for the metal phase of  the inner electrode was solved simultaneously with 
the Laplace equation for the solution phase. The theoretical current density distributions are com- 
pared with previous experimental results in order to determine the predictive suitability of  the model 
and a good agreement is observed between them. Furthermore,  a comparison is made between this 
model and an earlier one and a slight improvement in the prediction is observed. 
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constant defined by Equation 25 (V) 
constant defined by Equation 15 (V) 
surface area per unit volume of electrode 
(cm-') 
reversible electrode potential (V) 
function defined by Equation 28 (Acm 1) 
current density (A cm -2) 
exchange current density (Acm -2) 
total current (A) 
modified Bessel function of the first kind of 
order k 
( -  1) ~/2 
modified Bessel function of the second kind 
of order k 
electrode length (cm) 
index number in the series 
radial coordinate (cm) 
radius of k (cm) 
function given by Equation 14, (V) 
constant (0.0257 V at 25 ~ C) (V) 
variable employed in the integration of 
Equations 23 and 24, (cm) 

x 
x. 
Z 

axial coordinate (cm) 
function given by Equation 11 
variable defined by z = jl, Lr 

Greek characters 
O~ c 

G 

~ 
r 

#2 

V e 

P 
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charge transfer coefficient 
coefficient in the Fourier cosine series 
(A cm -2) 
mean relative deviation 
overvoltage (V) 
separation constant in Equations 9 and 10 
(cm 2) 
charge number of the electrode reaction 
resistivity (f~ cm) 
potential (V) 
function given by Equation 16 (V) 

Subscripts' 
e external electrode 
i internal electrode 
m metallic phase 
s solution phase 

1. Introduction 

The cylindrical geometry has many applications 
in industrial electrochemical systems. Cylindrical 
electrochemical reactors have been proposed for 
indirect electrosyntheses [1]. In this case, the useful 
species is generated at a large external electrode, being 
reconverted only partially at the thin inner electrode 

since its area is much smaller. Thus an undivided cell 
offering an appreciable cell voltage decrease and 
simplified constructive features can be applied. Since 
the central electrode experiences high current densities, 
when designing such units there is a need to take 
account of the distribution of the current density 
caused by the resistance of the metal and solution 
phases. A cylindrical geometry is also useful in equip- 
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ment for protection against corrosion and for metal 
plating on tubes or wires. 

In previous work carried out in this laboratory the 
experimental current distributions in cylindrical 
electrochemical reactors were determined using dif- 
ferent test reactions and employing various methods 
of measurement. The experimental results were com- 
pared with those predicted by a model that considered 
only the resistance of the metal phase. It was concluded 
that when the modified Wagner number, dimensionless 
number originated in the mathematical solution of the 
model, exceeds 15 x 10 3 for concentrated solutions 
[2-3] the experimental results agree reasonably well 
with the values predicted by the model. 

In order to predict more exactly the current distri- 
butions a second model was developed [4], which takes 
into account the resistance of the solution phase but 
assumes that the current at each axial position in the 
electrolyte is independent of the radial coordinate. 
The second model has a higher predictive capability 
than the former. 

In the model reported here, the current in the 
electrolyte is a function of the axial as well as of the 
radial coordinate, consequently the current density 
distribution is obtained by simultaneous solution of 
the Laplace equation for the solution phase with the 
equation of the potential distribution for the metal 
phase of the inner electrode. 

2. M a t h e m a t i c a l  m o d e l  

The model assumes that: (a) the metal phase of the 
external electrode is isopotential. This electrode is 
easily accessed, therefore an electrical connection can 
be made in order to ensure isopotentiality; (b) the 
overvoltage at the external electrode is not a function 
of x; it is imperative that the electrochemical reaction 
has a high polarization curve slope (di/&l ~ oo); (c) 
the changes in the reversible electrode potential with x 
are neglected. 

Figure 1 shows schematically the geometry of the 
model. The radius of the external electrode is re. Con- 
sidering that the inner electrode is a rod of length, L, 
and radius, ri, fed at its lower end (x = 0), the dif- 
ferential current balance is given by 

dim(X) 
- Asi(X) (1) 

dx 

with 
2 

A~ = - (2) 
ri 

where i(x) is the current density on the inner electrode 
at the position x. 

Integrating Equation 1 with im (0) = i~ and i m (L) = 0 
gives 

ii 

and ii is given by 

= A~ j;L i(x) dx (3) 

I 
ii -- 7zr~ (4) 

Ohm's law for the metal phase may be written as 

dq~m (x) 
- -  pmim(X) (5) 

dx 

Differentiating Equation 5 with respect to x, and 
introducing Equation 1 yields 

d2q~m(X) 
- Aspmi(X) (6) dx 2 

with the following boundary conditions: 

x = 0 qSm(0 ) = 0 (6a) 

x = 0 dqSm(x) _ pmii (6b) 
dx 

The Laplace equation for the solution phase in 
cylindrical coordinates, neglecting the term of the 
angular coordinate, because of symmetry, is 

(~2~b s 1 O~b s a2~bs - 0 (7) 
&'~ + r &-r + 8x 2 

and the boundary conditions are 

x = 0 84__2 = 0 for a l l r  (7a) 

x = L 8q~ _ 0 for a l l r  (7b) 
0x 

r - -  r e ~ s ( r e ,  x) = 0 for all x (7c) 

aq s -- p~i(x) (7d) r = r i c3r 

To obtain a solution by the method of separation of 
variables we set 

~bs(r, x) = X(x)  R(r) (8) 

- -  X - - - - ,  

~ x = O  

% 

rm( x ' t - A x  ) 

A; ::~ 
i(x) 2-/Tri Ax 

&,(x) 

Fig. 1. Geometry of the model. 
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The differential equations for X and R are 

dzX 
dx 2 + f X  = 0 

and 

(9) 

d2R 1 dR 
dr 2 + r dr /fl R = 0 (10) 

where f is the separation constant. 
Considering the boundary conditions 7a and 7b, 

there are an infinite number of  solutions of  Equation 
9 according to 

X,,,(x) = cos / - - ; - -  ! (n integral or zero) (11) 
\ c /  

being 

nTz 
/1 = - -  (12) 

L 

By introducing the variable z = j/~r Equation 10 is 
reduced to 

d2R 1 dR 
d f  + -~-zz + R 0 (13) 

a Bessel equation of zero order which has the solution 

A,TKo (14) 

where I0 and/Co are the modified Bessel function of the 
first and second kind, respectively, of order zero; 
which are tabulated in [5]. Taking into account the 
boundary condition 7c is 

A,* = -- A, [Io 
/ nT~re\ / 

Hence the functions 8~..(r, x ) -  R,,(r)X.(x), at 
length 

_ 00, + 
(16) 

are solutions of  Equation 7, satisfying the boundary 
conditions 7a, 7b and 7c. 

Clearly, a single solution ~bs,,(r, x) will, in general, 
not satisfy the boundary condition 7d. Now, since 
Equation 7 is linear and homogeneous, it follows that 
the sum of  a finite number of  solutions, qSs,, (r, x), is a 
solution of Equation 7. To obtain a solution satisfying 
7d, we consider the infinite series 

m)l 
(17) 

Differentiating Equation 17 with respect to r, solving 

at r = r~ and introducing Equation 7d yields 

-psi(X) = A, --~ I; 
n=0 

_ K d ( ~ _ ) ( , o  mzre\//  ~ - )  Tj/t.0 )]cos( 
Considering the recurrence fomulae [15]: 

lo = I1 

and 

,(,;-,) K0 - -  = - K1 

and introducing 

7,, - 
A n nT~ I1 _ _  

p~ L 

(18) 

(19) 

(20) 

into Equation 18 yields 

Hence, in order that Equation 17 satisfies 7d, the 
coefficients Y,, must be chosen so that, for r = r~, 1/p~ 
8qSs/Sr Ir~ becomes the Fourier cosine series of  i(x), thus 

1 eL 
= -s Jo i(t) dt (23) Y0 

and 

,1,, ~ i(t)cos dr, n = 1, ~ 

(24) 

By introducing Equation 24 into Equation 21 and 
solving for A, yields 

A n = 

2P, f~i( t 'cos(L~t)  dt 

1,, (.7,)- + ,<, (,o 
(25) 

Likewise 

Ao - P~ ;~ i(t) dt 
7C 

,,+o L }/ 

By introducing Equations 25 and 26 into Equation 17 

('7) O~(r~, x)  - Ps NO)  - 2p~ F(n) c o s  - -  
7[  71; n =  I 

(27)  
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Fig. 2. Experimental (o) and theoretical ( ) current distributions for hydrogen evolution. T = 30 ~ C. (a) [NaOH] = 1 M, ] = 0.269 A; 
(b) [NaOH] = l M. I = 0.727A; (c) [NaOH] = 0.I M, I = 0.490A; (d) [NaOH] = 0.1 M, t = 0.896A. 

where 

F(n) = 

[ ' o  ( ~ ) -  K o ( ~ d - ) ( I o n ~ - - ~ ) / ( K o ~ ) ]  

• jo L i ( l ) c o s  ( ~ ) d t  (28) 

and 

F(0) = lim F(n) (29) 
n~O 

The definition of  overvol tage is 

q(x) = •m(X) -- 0s(ri, x) -- E 0 (30) 

Taking  into account  Equat ion  27, ~/is expressed as 

~(x) = 0m(X) 

+ F(O) + - -  F(n) cos - E0 
n= 1 

Finally 

~(X) ~-- /~(0) -~- ~ m ( X )  

(31) 

(32) 

For  the electrochemical reaction at the inner 
electrode Tafel kinetics are assumed 

[ cvoF 1 i(x) = i o exp [ R T  ~(x) (33) 

The current  density distr ibutions were obtained by 
s imultaneous and iterative solution of  Equat ions  3, 6, 
28, 32 and 33. The solution of  this system of  equat ions 
was carried out numerically.  

3. Results and conclusion 

The experimental  current  density distr ibutions were 
determined using the segmented counter  electrode 
method.  A detailed description of  the equipment  
employed,  method  of  operat ion,  test reaction and 
reagents has been given previously in [2]. 

Figure 2 shows some typical current  density curves 
as a function of  position. Hydrogen  evolution f rom 
alkaline solutions at 30 ~ C was used as the test reaction. 
In each case, the full line represents the theoretical 
curve according to the model.  It  must  be noted that  
there is a close agreement  between the experimental  
and theoretical results. 

In order  to compare  the predictive suitability of  the 
present  model  and an earlier one [4], Table  1 shows the 
mean  relative deviation, 6,., of  the experimental  
current  densities with respect to the theoretical values 
for  each model.  The  test reaction was hydrogen 
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Table 1. Review of the results (eleetrolyte." NaOH IM," T = 30~ 

I (A) ~, x 102 

This model Earlier model [4] 

0.1497 14.08 14.03 
0.1736 17.30 17.18 
0.2692 12.97 13.08 
0.3915 13.31 13.43 
0.4296 13.71 14.16 
0.4859 13.82 14.10 
0.5724 13.40 13.60 
0.6393 14.63 14.94 
0.7272 12.77 I3.51 
0.7574 12.54 13.19 

evolution from I M NaOH solution. It can be seen 
that the new model shows a slight improvement in the 
prediction, the improvement being better for higher 
values of total current. However, for the hydrogen 
evolution from 0.1 M NaOH solution it was observed 
that both models present the same mean relative 
deviation. 

Finally from this work it is concluded that the 
experimental results agree well with the predicted 
values and the new model has a higher predictive 
ability than the earlier one but at the expense of more 
computation time. 
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